Mining Compressed Frequent-Pattern Sets
نویسندگان
چکیده
A major challenge in frequent-pattern mining is the sheer size of its mining results. In many cases, a high min sup threshold may discover only commonsense patterns but a low one may generate an explosive number of output patterns, which severely restricts its usage. In this paper, we study the problem of compressing frequent-pattern sets. Typically, frequent patterns can be clustered with a tightness measure δ (called δ-cluster), and a representative pattern can be selected for each cluster. Unfortunately, finding a minimum set of representative patterns is NP-Hard. We develop two greedy methods, RPglobal and RPlocal. The former has the guaranteed compression bound but higher computational complexity. The latter sacrifices the theoretical bounds but is far more efficient. Our performance study shows that the compression quality using RPlocal is very close to RPglobal, and both can reduce the number of closed frequent patterns by almost two orders of magnitude. Furthermore, RPlocal mines even faster than FPClose[11], a very fast closed frequentpattern mining method. We also show that RPglobal and RPlocal can be combined together to balance the quality and efficiency.
منابع مشابه
CT-ITL : Efficient Frequent Item Set Mining Using a Compressed Prefix Tree with Pattern Growth
Discovering association rules that identify relationships among sets of items is an important problem in data mining. Finding frequent item sets is computationally the most expensive step in association rule discovery and therefore it has attracted significant research attention. In this paper, we present a more efficient algorithm for mining complete sets of frequent item sets. In designing ou...
متن کاملFast Frequent Itemset Mining using Compressed Data Representation
Discovering association rules by identifying relationships among sets of items in a transaction database is an important problem in Data Mining. Finding frequent itemsets is computationally the most expensive step in association rule discovery and therefore it has attracted significant research attention. In this paper, we describe a more efficient algorithm for mining complete frequent itemset...
متن کاملEfficient Mining Top-k Regular-Frequent Itemset Using Compressed Tidsets
Association rule discovery based on support-confidence framework is an important task in data mining. However, the occurrence frequency (support) of a pattern (itemset) may not be a sufficient criterion for discovering interesting patterns. Temporal regularity, which can be a trace of behavior, with frequency behavior can be revealed as an important key in several applications. A pattern can be...
متن کاملFinding Characteristic Substrings from Compressed Texts
Text mining from large scaled data is of great importance in computer science. In this paper, we consider fundamental problems on text mining from compressed strings, i.e., computing a longest repeating substring, longest non-overlapping repeating substring, most frequent substring, and most frequent non-overlapping substring from a given compressed string. Also, we tackle the following novel p...
متن کاملA New Approach for Extracting Closed Frequent Patterns and their Association Rules using Compressed Data Structure
In data mining, term frequent pattern extraction is largely used for finding out association rules. Generally association rule mining approaches are used as bottom-up or top-down approach on compressed data structure. In the past, different works proposed different approaches to mine frequent patterns from giving databases. In this paper, we propose a new approach by applying the closed & inter...
متن کامل